Interpretability for AI safety

Victoria Krakovna

DeepMind
Interpretability and long-term safety

- How can interpretability help us build safer AI systems?
 - ensuring safe behavior generalizes
 - identifying causes of unsafe behavior
- For example, what is an RL agent 'thinking' when it exploits a loophole in its reward function?
- Interpretability is particularly crucial if we want to identify potential safety issues before deploying the system
 - e.g. if certain errors are unacceptable even during training
- As we build more and more general AI systems, what kind of understanding is most helpful for safety?
AI safety problems

Long-term AI safety
- Reliably specifying human preferences and values to advanced AI systems
- Setting incentives for AI systems that are aligned with these preferences

Research challenges
- **Specification problems**: if some important variables or considerations are omitted from the objective specification (e.g. reward function)
- **Robustness problems**: issues that arise even when specification is correct (e.g. during learning)

Papers: [Concrete Problems in AI Safety](#), [AI Safety Gridworlds](#)
Specification: reward gaming

Problem

- Difficult to specify reward functions to correctly reflect human preferences
- RL agents can find shortcuts to getting lots of reward without achieving the intended objective

Source: Faulty Reward Functions post (Amodei and Clark)
Specification: off switch

Problem

- We want to be able to shut down our agents
- Agents have an incentive to avoid shutdown if it results in getting less reward
- Don't want agents to seek shutdown either - need indifference to shutdown

Source: The Off Switch presentation (Hadfield-Menell)
Specification: side effects

Problem

- Want agents to avoid unnecessary disruptions to the environment while achieving the objective
- Need general solutions that don't rely on specifying a penalty for every possible disruption
Robustness: distributional shift

Problem
- We often apply our systems in a different regime from the training regime
- Want them to adapt or fail gracefully
Robustness: unsafe exploration

Problem

- There are some errors we don't want our agent to make even during training
- Want the agent to always follow safety constraints to avoid damage to itself or its surroundings
Relevant forms of interpretability

Global: Representations

Analyzing representations for specific units / layers

Source: Feature Visualization post (Olah et al)

Analyzing representations in reinforcement learning

Source: Understanding DQN paper (Zahavy et al)

Learning disentangled representations

Source: beta-VAE paper (Higgins et al)
Relevant forms of interpretability

Local: What influences a prediction / decision?

Influential features

Source: LIME paper (Ribeiro et al)

(a) Original Image (b) Explaining Electric guitar

Influential data points

Source: Influence functions paper (Koh and Liang)

Text explanations

Source: Visual Explanations paper (Hendricks et al)

This is a Kentucky warbler because this is a yellow bird with a black cheek patch and a black crown.

This is a pied billed grebe because this is a brown bird with a long neck and a large beak.
Specification: reward gaming

Problem
- Difficult to specify reward functions to correctly reflect human preferences
- RL agents can find shortcuts to getting lots of reward without achieving the intended objective

Desired interpretability examples
- Does the agent have representations that indicate understanding of the objective? (eg "racetrack", "finish line")
- To what extent are influential data points associated with the objective?
Specification: off switch

Problem
- We want to be able to shut down our agents
- Agents have an incentive to avoid shutdown if it results in getting less reward
- Don't want agents to seek shutdown either - need indifference to shutdown

Desired interpretability examples
- Does the agent have a representation of an 'off switch'? Is it being used in decisions?
- An explanation why the agent took a longer path to press the button
Specification: side effects

Problem

- Want agents to avoid unnecessary disruptions to the environment while achieving the objective
- Need general solutions that don't rely on specifying a penalty for every possible disruption

Desired interpretability examples

- Does the agent have/use representations like 'broken' or 'stuck'? (or something else related to reversibility)
- How much do features corresponding to other objects in the room influence its decisions?
Robustness: distributional shift

Problem
- We often apply our systems in a different regime from the training regime
- Want them to adapt or fail gracefully

Desired interpretability examples
How much do decisions rely on representations or features that are specific to the training setting?
Robustness: unsafe exploration

Problem
- There are some errors we don't want our agent to make even during training
- Want the agent to always follow safety constraints to avoid damage to itself or its surroundings

Desired interpretability examples
- Does the agent have/use representations like 'broken' or 'danger'?
- Does the agent's explanation of its chosen actions refer to safety constraints?
<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Reward gaming</th>
<th>Off switch</th>
<th>Side effects</th>
<th>Distributional shift</th>
<th>Unsafe exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representations</td>
<td>objective-related?</td>
<td>"turn off"</td>
<td>"broken", "stuck"</td>
<td>specific to training?</td>
<td>"broken", "danger"</td>
</tr>
<tr>
<td>Influential data points</td>
<td>objective-related?</td>
<td>being interrupted?</td>
<td>other objects in environment</td>
<td></td>
<td>dangerous situations</td>
</tr>
<tr>
<td>Influential features</td>
<td></td>
<td></td>
<td>other objects in environment</td>
<td>specific to training?</td>
<td>proximity to bad states</td>
</tr>
<tr>
<td>Explanations</td>
<td>objective-related?</td>
<td>why disabled off switch?</td>
<td>why caused disruption?</td>
<td></td>
<td>aware of safety constraints?</td>
</tr>
</tbody>
</table>
Summary: desired interpretability

- Both global and local forms of interpretability are helpful for safety
- Identifying representations is particularly useful for all the safety problems:
 - Identify representations without easy visualizations, like "off switch"
 - Check if the agent uses specific representations
- Need more work on interpretability of reinforcement learning agents, not just image classifiers

Will I get switched off?
Will I get stuck in that state?
Safety as a target

- What can safety do for interpretability?
- Interpretability would be less important if our AI systems were 100% robust and made no mistakes
- What is interpretability? What kind of understanding is important?
 - Whatever can contribute to ensuring safety!
- Safety questions can serve as grounding for interpretability questions
 - A nail for the interpretability hammer
Takeaways

- Interpretability is important for long-term safety, and safety can serve as grounding for interpretability.
- Think about how your interpretability methods can apply to advanced AI systems.
- If you're interested in the intersection of interpretability and long-term safety, consider applying for a Future of Life Institute grant.
- Join us in working on these challenging problems and making advanced AI safer!

Thank you!